

PPCPPCPPCPPCGeeks Kitchen TutorialGeeks Kitchen TutorialGeeks Kitchen TutorialGeeks Kitchen Tutorial
Revision 1.0Revision 1.0Revision 1.0Revision 1.0

2 BigJ’s Kitchen Walkthrough

This Documentation is going to assist you in a number of things regarding the Apache
Device Kitchen. Specifically we are going to be focusing on the “New” Core. This
kitchen functions differently than those previously released, as this is going to be the new
foundation for what we will see in future kitchen releases, I am going to explain in great
detail how it works, and how to get it to work for you.

On the next page you will find the table of contents. I am going to walk you through the
very basics, and into the extremely complex. You may of course skip ahead to the section
in which you are seeking assistance. If you do NOT own the device pictured below, you
very well may have downloaded the wrong tools for what you are seeking to do, and the
probability of you “bricking” or making dead your handset has just increased ten-fold.

This… is the HTC Apache. It is quite a spectacular piece of engineering. You’d never
know it until you upgraded it, but there it is in all it’s splendor. This device shipped with
an early revision of the Windows Mobile 5 architecture, known to enthusiasts as AKU 2.
The first “hacked” update to this phone brought the AKU up to 2.2. Further reverse
engineering has allowed us to see upgrades as far as 3.3, and even an intensely hacked
3.5, those 3.3 and 3.5 revisions however, were built upon the core foundations of the 2.2
“CORE”.

Thanks to the efforts of many, a “True” AKU 3.5 core has been brought to the surface,
and that is what we will be working with today.

3 BigJ’s Kitchen Walkthrough

SECTION I:
PG 4

What is a kitchen and what can it do for me

- What is a Kitchen
- Where do I get the Kitchen
- What do I do with these files
- Folder by Folder breakdown

SECTION II:
PG 8

How do I make packages to add to the kitchen

- How to convert your CAB files into OEM packages
- Generating Registry Entries for your OEM application
- Creating shortcuts and managing CLSID
- Generating an option.xml file amongst other things
- Complicated OEM packages
- Creating sub-directories and moving files into them

SECTION III:
PG 28

Making and burning your first ROM

- Running BuildOS and CreateOS
- What is in the “temp” folder
- What to do with the nk.nba file
- Patching in your own custom boot screen
- Converting the nk.nba file into a flashable nk.nbf
- Flashing your new ROM onto your handset
- BigJ’s tips & tricks
-

SECTION IV:
PG 38

When it all goes wrong

- Common Error messages and what they mean
- Stuck in Bootloader Mode
- White Screen of Death
- Hanging on the Bootscreen
- Hanging on the second splash screen
- Locks up at the today screen

4 BigJ’s Kitchen Walkthrough

Section I: What is a Kitchen

What is a Kitchen?

A Kitchen is a term used for the set of tools used to create or “cook” a ROM for your
phone. They typically include a large set of confusing folders and files that would make
no sense to anyone outside of the “know”. These files and tools are used to create an
operating system for your handset, specially customized to suit your needs, as well as
allow you to upgrade your operating system files outside of your Carriers designated
upgrade path.

Where do I obtain a ROM Kitchen?

PPCGeeks has an FTP where it stores the numerous kitchens available for the HTC
Apache.

FTP: up.ppcgeeks.com
PORT: 21
USER: ppcgeeks
PASS: ezupload
FOLDER: /Apache/

Once in the /Apache/ directory you should have no trouble locating the most recent
version of the PPCGeeks kitchen. There you will also be able to locate various prebuilt
kitchen OEM packages created by other members of the community. I would recommend
investigating those prior to using however as you will more than likely find errors or
inconsistencies.

5 BigJ’s Kitchen Walkthrough

What do I do with these files now?

Now that you have downloaded the kitchen as a single file archive (zip or rar). You will
need to extract it to your hard drive. Most systems have an archive extractor built in. For
those of you that do not, I will need you to go to www.rarsoft.com and download the
latest trial version of “WinRAR”. This application will allow you to get to the files
contained in the archive. Once you have installed WinRAR, simply right click on the
downloaded archived kitchen file, and choose the option “Extract to FOLDER”.

You will now have a folder that holds the files and tools of the ROM Kitchen. It should
look something like this.

In this state, you could simply click on BuildOS.exe, build the OS, CreateROM.bat and
make the nba file, convert that to a flashable nbf, and flash. Bam your done… simple
right? Well yes and no. Yes in that you will have all of the benefits of an updated
operating system. No in that you have not yet learned anything and therefore not
customized your handset to suit your needs. In order to do this lets explore the folder
structure you see here.

6 BigJ’s Kitchen Walkthrough

Folder by Folder breakdown

ROM
This folder holds the skeleton nba file that later is used as a reference for building your
own ROM during the CreateROM process. This folder should not be touched by you.

SYS
This folder holds all of the necessary files to make and build the operating system. This is
where you will find all of the base functionality, 90% of these files and folders are
mandatory and you will not be able to make many, if any changes at all to this directory.
If you REALLY know what you are doing then have at it, if you are not comfortable with
manipulating root operating system files, then you should not touch this directory either.

TOOLS
This folder has all of the tools that are used during the ROM creation process. The *.bat
file “CreateROM.bat” calls upon a large majority of the files in there to manipulate the
kitchen data once it’s been put into a dump. If you mess with anything in here, your
ROM may not build properly. This folder should also not be touched by you.

UPGRADE
This folder has the files you use to actually flash your handset once the ROM has been
created successfully. I think this folder has its uses, but later we will learn what we can
and can’t change in there. For now, well just leave it alone. In a nutshell, I would move
over the new flashing exe “APACUpgradeUt_noID.exe” and use that one. This will
absolve you of having “COUNTRY ID ERROR” when trying to flash your newly built
ROM.

OEM
Now we come to the folder of massive manipulation. This folder holds your
customizations. Any type of addition that you wish to build into your ROM, go into here.
You will see a few folders in here that you will not be allowed to mess with, such as the
Apache Drivers. Moving files into SYS is not necessary so to speak, but it allows you to
organize your kitchen better, as well as not have to worry about accidentally
manipulating a folder or file that will cause devastation to your system. Here is a list of
what is not listed as optional in this folder.

APACHE
-drivers –sap –service -setting
CERT
-dsm –dsm2 – dsm3 –dsm4
OEM
-btpan –camera –dst –gwes –lang –langwwe –mms –verizon
HELMI

7 BigJ’s Kitchen Walkthrough

Looking at this list we can easily see what we simply cant build our ROM without, and
what should be listed as optional. So lets rename what should be optional as such, and
move the rest over to the SYS folder. Add the word “Optional_” to the front of Verizon.
Verizon is not mandatory, and should be kept in here as optional.

Now let’s move the rest of the non optional folders to the SYS… Highlight all APACHE,
CERT, HELMI, and remaining OEM and move those to the SYS folder. Now you should
have a folder loaded with “Optional_”.

The Optional_xxx are folders containing what is commonly reffered to as “Kitchen
OEM”. These are programs, settings, pictures, ringtones, etc. that have all been converted
into a format that can be built into the phones operating system as a native application in
your handset. This means that even after a HARD-RESET, these applications and settings
are retained. The next step is to learn how to turn all of your favorite programs into
“Kitchen OEM” packages.

8 BigJ’s Kitchen Walkthrough

Section II: Creating your own OEM’s

Converting & Working with CAB files

First we need to do a little footwork. We need to locate all of the CAB file installer
versions of all of the applications that you wish to turn into OEM packages. This is
simple for some as most applications offer a CAB as a download option. As you see here,
the top download is an exe installer, but just beneath you can choose to download the
corresponding CAB file. Some will offer an installer only, but they merely dump the cab
file into “C:\Program Files\Microsoft ActiveSync”.

Others are much more devious and package the cab files into exe installers which either
hide the CAB file somewhere on the computer in places such as “C:\Documents and
Settings\Administrator\Local Settings\Temp“, or not only hide it, but will DELETE it if
the phone is not connected to the computer, forcing you to run the exe file again when the
handset is connected. Just remember, it has to be on your computer somewhere, and if it’s
on your computer, you can find it. I have done creation date searches on my machine for
some of the more elusive, while having my phone hooked up, just not hitting OK on the
device to suspend the deletion of the CAB file. Regardless of how you obtain them, you
need them to build the OEM package.

I’ve obtained my CAB files, now what?

Now that you have obtained the cab files, you need an application that lets you break
them down. I use WinCE Cab Manager personally so that is what were going to use
today. A slightly older version 21035 has a crack (look real hard), the newer version
21050 however has yet to be cracked. It requires windows scripting host 5.6 to be
installed to work properly, just punch that into google and grab it. Now that were all
setup your CAB files should look like this…

Double click on that file and it will load into a window. For this example we will do an
extremely simple cab file, in our next example we will do a more complicated one. Our
first example will be a program called DeviceLock. This application does not need a
shortcut, BUT the registry for this application has an issue we will need to resolve. Well
go through this step-by-step to ensure you are comfortable with breaking open your cab
files.

9 BigJ’s Kitchen Walkthrough

1 – Double Click your selected cab, in this case “DeviceLock.CAB”

2 – It will open up exactly as shown below

3 – Click on the “FILES” and look at the list of files. Pay special attention to where those
files are directed to go. Any file that says %InstallDir% are slated to go into the Default
Install Dir listed in the screenshot above. In this case “%ProgramFiles%\Lock”.

4 – Since we are going to force the %InstallDir% to /Windows/ and the other file is
going into %Windows% already, this is what makes it a simple CAB. Now Right Click
on the files and choose to extract the files.

5 – Name the directory in which to extract the files. Lets just make it simple and name it
according to the new kitchen OEM scheme. Optional_ProgramName_Revision(Date). In
this case it will be Optional_DeviceLock_v1.2(5-31-07). This way not only can you track
the revision of the application package you are making, you can track your changes
according to date

10 BigJ’s Kitchen Walkthrough

6 – Now its time to extract the registry information for this program. This step is slightly
different. Highlight the registry in the list. Now go to FILE, and EXPORT, and EXPORT
TO REG. Name this anything you want, as the name will change later, for simplicity I
typically name it xxxxxx to remind me to change it later.

7 – One VERY important and often overlooked step comes next. You will need to
convert the exported registry into UNICODE. You will also need to make sure there is an
EMPTY line after the very last entry. Now there are several ways to do this, my own is
radically different than what I’m going to teach you, but it is effective none-the-less.
Rename the file extension from .REG to .RGU. Now double click the file, it will ask you
what program to open the .rgu file with. Choose “WordPad”. (not notepad), and go ahead
and permanently allow that file extension to open with WordPad.

11 BigJ’s Kitchen Walkthrough

Once you have the .rgu open in wordpad, make sure you have the empty space at the
bottom.

Now save the document as a “UNICODE” document. Maintain the current file extension
of .rgu as it will default to .txt as in the picture below. It may ask if you want to overwrite
the current file, choose Yes.

8 – Now we have the registry file in the correct form to work with it. This is the time you
will go through EVERY SINGLE entry to ensure that they are formatted properly so that
you don’t get errors when you run BuildOS.exe. The older kitchen would tell you wich
rgu file was the problem and which line… the new one however does not, and it makes
troubleshooting a bitch, so do it right the first time. That being said, I have a screenshot
of the program I use to edit files (I LOVE line numbers, the program is called Notepad2
and is available here…. http://www.flos-freeware.ch/notepad2.html and is free). If you do
choose to use this program to associate rgu files with, to encode in unicode you simply go
to the FILE dropdown and choose ENCODING, and just click UNICODE and your done.
From here on out, all of my screenshots will be done using that program.

Anyways, here is the registry entries we are working with.

12 BigJ’s Kitchen Walkthrough

The problem is on line 6. You see a cab file translates things with %’s into what it is
supposed to be, an OEM package will not. So we need to change this to point to the
windows directory. You would think that the entry would change to \Windows …. But it
does not. The entry needs to change to \\Windows. When the OS builds the registry it
needs to have double “\\” in order to process properly. When you have extremely large
registries you have exported, you have to look very carefully for entries made with a
single “\” and entries made with “%” (relative paths). Once corrected it looks like this,
and you can now close the file and not have to worry about it until later (later we rename
it).

9 – Even though this OEM does not *need* a shortcut, lets make one anyways for the
purposes of this tutorial. Make a new text document and name it what you would like the
shortcut called… DON’T use spaces, you can add spaces to the name when the OS
builds. This shortcut will be called “DeviceLock.txt”. Open it up. Now were going to
pick an arbitrary two digit number, 41, that’s a good number because its somewhere in
the middle. Now the shortcut format needs to be EXACTLY as it is below

41#"\Windows\DeviceLock.exe"

13 BigJ’s Kitchen Walkthrough

Now save the file, leaving the default encoding of notepad wich is ANSI. Converting the
shortcut to Unicode will break it. Once its saved, rename it with the extension “.LNK”
once you do this the file will turn into a windows logo and have the little arrow denoting
a shortcut.

I couldn’t tell you the purpose of the number, and the directory should be obvious. The
only thing you will need to manipulate for every single shortcut you make is the name of
the exe, in this case its DeviceLock.exe (exactly as the exe is, including caps). Its case
sensitive, and you can only shortcut ONE exe at a time. So if you need more than one
shortcut, you need to make more than one shortcut file.

10 – Now comes the tricky part. You need to make a file (yes its getting redundant) that
will tell BuildOS.exe where to put your shortcut, like do you want it in your start menu
under programs… or is it a game and you want the shortcut to your game in the games
folder where solitaire resides? We’re going to make another txt document and name this
one “initflashfiles.txt”

Open the initflashfiles.txt, copy & paste the text below exactly as it appears to make your
shortcut appear in the start menu, under programs,

Directory("\Windows\Start Menu\Programs"):-File("DeviceLock.lnk","\Windows\DeviceLock.lnk")

14 BigJ’s Kitchen Walkthrough

Notice in the picture that there is NO SPACES (aside from the “Start Menu”) so when
you copy and paste, make sure it doesn’t arbitrarily add a space after the :-
Another thing you may notice is that I have commented both the START and the END of
the initflashfiles.txt this is considered “Best Practices” and is not necessary, I assure you
however if you do not do this, a complicated cab file will give you nightmares trying to
troubleshoot if you don’t comment the start and end of what you are having the file write.
As a side note, if you do comment a file, you MUST end comment the file as well or it
will not get processed by BuildOS.exe. If you want to make it simple you can just end
with a semi-colon; as in the below example. Please don’t be lazy, follow the above ex.

11 – Great Everything looks ready to go. Now all we need to do is assign this OEM
package a unique identifier so that the OS can build a CLSID for it. Without a unique ID
this package will never build into your ROM. You can generate unique ID’s at this URL
http://www.famkruithof.net/uuid/uuidgen
I would generate about 300 or so and just save them to a txt document on your computer
somewhere for future use. As you use them, be sure to delete them or mark them out so
you don’t accidentally use the same one again. Lets generate some right now.

Highlight the top number and copy it. Now go into your OEM folder and right click and
choose to make a new text document, name this new document
7d41d4ce-14a6-11dc-8314-0800200c9a66.dsm
Remember the DSM extension and not .txt like you would think.

Now RENAME your xxxxxxxxxx.rgu to the exact same thing, save the file extension so
it will look like this …
7d41d4ce-14a6-11dc-8314-0800200c9a66.rgu
your OEM package folder should now look like this

15 BigJ’s Kitchen Walkthrough

Previous kitchen OEM packages would now be 100% ready to be dropped into the OEM
folder and built. The new kitchen however requires one additional step to take place
before its ready…

12 – Now we need to get your package to show up on the list with a cute little checkbox
when you open up BuildOS.exe.

As you can see from this screenshot, I have designated a category for this OEM package
to show up under “BigJ Custom OEM”. You can also see that it is checked off by default
for building into the ROM. This is what we are going to do next.

Guess what? Make another txt document and name this one “option.xml”

16 BigJ’s Kitchen Walkthrough

I don’t know what you have associated with xml files, but change it to Notepad2 (the
program mentioned earlier that we associated everything else with). To do this, right-
click the file and choose the option OPEN WITH, and then CHOOSE PROGRAM…

As we have previously, browse to Notepad2.exe and choose to permanently open files of
this type with that program. Once open you can then follow this relatively simple as there
are line numbers here for you. Im going to number the lines on the left, but they are not
part of what you need to paste in there. The screenshot will help you to understand

17 BigJ’s Kitchen Walkthrough

1 <?xml version="1.0" encoding="UTF-16" standalone="yes"?>
2 <Items>
3 <Item name="BigJ DeviceLock" group="BigJ Custom OEM" checked="true">
4 <Tip>Enhanced LOCK functionality with settings</Tip>
5 <Guid type="p">7d41d4ce-14a6-11dc-8314-0800200c9a66</Guid>
6 </Item>
7 </Items>

Line 1: tells the document that it is an XML document, never change this

Line 2: tells the xml document that you are adding an item to the list

Line 3: this line is important so were going to break it down section by section

- name= This is the name of the OEM package as it will appear on the list of
programs when you are looking at BuildOS.exe, in this case “BigJ
DeviceLock”

- group= This is the CATEGORY that your OEM will appear under in the
BuildOS. In this example it is “BigJ Custom OEM”

- checked= This is where you tell BuildOS if your OEM package will be
checked off by default

Line 4: this line is also important especially if you are going to be uploading your OEM
packages to share with the community. This line allows you to type in a custom tooltip
that will popup when users hover over your package in the BuildOS utility. It’s a good
idea to explain what your application is, possibly its revision, and anything else that may
be useful to a stranger. This tip can be as long as you would like, so long as you keep it
ALL on line 4. In this example the tooltip is “Enhanced LOCK functionality with
settings”

Line 5: this is where you will copy and paste your CLSID that we generated for this
package. This tells BuildOS that this folder should or should not be built into the ROM.
So maneuver back over to the DSM file, copy the CLSID and paste it in there. You don’t
need the files extension “.dsm” just the numbers & letters prior to that. Ours is 7d41d4ce-
14a6-11dc-8314-0800200c9a66

18 BigJ’s Kitchen Walkthrough

Line 6: this is the closing tag, you are telling the xml document that the item you are
adding is now added

Line 7: this concludes your item entry, as XML documents can contain multiple items,
your are telling the document to end by pluralizing the argument and adding the closing
tag of a “/”

12 – Congratulations! The Final step (I promise) is to move your entire folder into the
kitchens “TOOLS” folder. Good, now drag it on top of the file “BuildDsm.exe” … wait a
few seconds and a black box will popup, hit any key and it disappears, now move that
folder into the OEM folder. YAY!

If you’re clever you saw that I actually move BuildDsm.exe from TOOLS and into my
OEM folder, that way I don’t have to move the file all over, I just put it in OEM, and then
drag it to BuildDsm.exe. Yes that file makes it into my phone, but worth the time I save.
It is extremely important that you do not forget this FINAL step. If you forget to do this,
then your package has a high chance of not being integrated properly, corrupted, or
worse, it can actually break your package entirely, causing you to more or less start from
scratch.

19 BigJ’s Kitchen Walkthrough

Complicated OEM Packages

Complicated OEM packages are exactly that, complicated. These are packages that use
tricks and shortcuts to accomplish the task of installing. Figuring out exactly what they
are doing is a serious pain in the ass. I’m going to go into a few of the tricks employed,
and ways to recognize them, and avoid missing something that is crucial to your OEM
packages success. For this Example We are going to break down the Arcsoft Picturemail
MMS cab file. This particular cab file is courtesy of the Verizon Extended Rom. I choose
this one in particular because it pretty much uses every dirty trick in the book. One of
which I am still learning to overcome, provxml files, so I will not be able to get into
much detail once we get to that point.

In this chapter we are going to cover
-Platformxxx.reg files & why they are a pain in the ass
-Setup.dll files & how they are devious little monsters
-Compressed or mis-named files
-Files that need to be put into sub-directories & how to move them
-How to determine if provxml files are needed and how little I know about them

20 BigJ’s Kitchen Walkthrough

Platformxxx.reg

This one is really easy to spot simply because it’s a file buried in the cab itself. You see it
circled in the picture on the previous page. Whenever you see a file like this, buckle up
baby cuz its about to be a long ride. These files are evil because they are typically very
long making it a tedious process to go through it and correct all of the inconsistencies so
that BuildOS can read it. If you miss the fact that there is a Platformxxx.reg, another way
to know that the CAB file is using one is to look at the registry entries currently listed by
WinCE Cab Manager.

Whenever you see this entry, it’s a tell that you overlooked a Platformxxx.reg file. This
entry tells the operating system, that the cab file has supplied a registry file that needs to
be integrated into the registry (the Platformxxx.reg).

Extract all of the files as you normally would as we discussed in the previous example.
Once this is complete you will need to follow basically the same steps as before, rename
the registry file to .RGU, convert it to Unicode, make sure there is an empty line at the
end, and double check that it starts with REGEDIT4 (some platformxxx.reg files do not
start with REGEDIT4 and ALL rgu files must).

Now starts the fun part, remember that line-by-line interrogation that we talked about on
big ass registry files, let’s get started, look at the below example, what is missing?

21 BigJ’s Kitchen Walkthrough

The first line must always be…. REGEDIT4, so let’s add this and move on.

Now we can officially begin the search, here’s a clip about 130 lines into this mess

Look carefully, at first glance this looks like a legitimate section of registry.

Line 137 has pathing issues. As we discussed earlier all entries that are built need to have
pathing done with double “\\” So let’s correct this.

This looks right now doesn’t it? NO! You made a rookie mistake, well I never told you so
I’ll have to let it slide this time, Registry pathing in an RGU file cannot end in “\\”
because it thinks there is more to the path and will throw an error when building your
ROM when it hits this OEM Package. Let’s make the final correction here and move on.

Great, only 190 or so more lines to go through. Ya, Platformxxx.reg files suck balls. This
particular one has about 60 or so corrections like the above to make.

22 BigJ’s Kitchen Walkthrough

Setup DLL files

When you open a CAB file and see right at the top “Setup DLL” you know you’re in for
a multiple flash session to test this OEM. This clues you into a number of things going on
with the cab file in question, all of which you will not like.
First, there is probably a “CeSetup.dll” file, and/or SetupDll.dll, and/or SettingDll.dll
Second, there is sometimes going to be a “Checkfile.exe”
Third, some of the files in the package may or may not be renamed during the install
Fourth, additional registry entries may or may not be created after the install

First & Second are easily taken care of, just delete those files outright from your
extraction folder -which should be named….. Optional_MMS_v36124(5-31-07)
You want to delete those files because they do nothing for an OEM integration, and since
a lot of other cab files will be using those exact same files, you will get duplicate file
errors when running BuildOS.

The third item is the mystery item. You typically won’t know this until you build the
package, burn a ROM, and then throw some random error about missing a file. An
example of this is the IM+ Cab file.

Here you will see a nice list of “reslib_” language files. When you install the application
it asks you what language to install, when you choose, it takes the associated language
file, names it rescource_lang.dll and then copies it into the windows directory not the
programs directory. The only way to figure this out, is to build the whole package and
then try to launch the program and get thrown a “rescource_lang.dll file is missing or
corrupted” error. Then you get to revisit the CAB file and try to figure out which one of
those files is being renamed, and then you realize you just need to rename one, and delete
the rest from your package because they are not used. Did you notice the Setup DLL at
the top of that cab file…. I did, see the Setup.dll file in there to that needs to be
deleted?…. EVIL!

23 BigJ’s Kitchen Walkthrough

The fourth thing a Setup DLL file can do, is generate registry entries that the program
needs to function. Sometimes the CAB will have registry entries, and yet, the Setup DLL
will add even more additional entries that were not exported with the rest. The only way
to get these entries is to install the cab file on your PPC, and search the registry.
Sometimes it’s simple, and you’ll just find more entries underneath the software’s
heading, sometimes it’s a pain in the butt, and you’ll find them buried under a CLSID
entry, if you can’t find them, but know they are there, you will need to dump the whole
registry, install the application, and redump the registry and run a comparison. Registry
comparisons are the absolute worst thing you can ever sit through, it’s a veritable hell of
entries that make no sense. The ppc writes sooooo many erroneous things to the registry
that doing a full comparison can take you hours. Those are the applications that I
typically give up on if I can’t find the entries I need within an hour or so.

When it’s simple, just use resco registry, or its free equivalent, and export the keys you
need. Once on your computer, open them up and append them to the OEM’s RGU file.

Compressed or mis-named files

Every once in a great while you will come across a cab file that has compressed files
inside of it. I’ve even come across a few that have cab files within cab files. Those are
kind of messy, but now that you know all of the steps, you just duplicate them, but all
inside of the same OEM package.

You can recognize a compressed file easily, it will have an underscore where the last
letter of the file is supposed to be. Instead of
Playback.dll – you will see
Playback.dl_
The underscore denotes compression. The funny thing is, if you just rename it, it seems to
work about 9 times out of 10. The other time, you need to install the cab file, and then go
into that programs directory and copy that file out and get it onto your computer and into
your OEM package folder. Simple, yet annoying all at the same time.

Creating sub-directories and moving files into them

For this section we are going to revisit our shortcut placement file. Remember way back
when we were making shortcuts and had to tell the system where to actually put that
shortcut? That’s right, “initflashfiles.txt” Now pay close attention because this gets messy
pretty quickly.

First of all you need to know if you need to create subdirectories at all
Secondly, you need to know if those directories already exist on the phone
Third, move all of the files you need to into their respective subdirectories
Fourth, you CAN rename the files when you move them (awesome I know)

24 BigJ’s Kitchen Walkthrough

#1 – Detecting if you need to move files into subdirectories is fairly straightforward. Lets
look back on this picture example of a complicated OEM package shall we.

As you can see, there are two directories that require a load of files to be moved into
them. In this example we need a “UAContents” directory as well as a sub directory of
that “Templates”. Lets go ahead and make ourselves an initflashfiles.txt and get started.
Remember to comment what you are doing.

;==
; File Setup for ArcSoft MMS CDMA v3_0_6_24
;==

This is a good start for the top. Now before we get crazy, lets move all of the files that
need to be moved into directories the handset already has. The phone already has a “My
Documents” folder, it also already has a subdirectory of that called “My Music”

; -----------File Movement into EXISTING directories-----------------------
Directory("\My Documents\My Music"):-File("Alouette.mid","\Windows\Alouette.mid")
Directory("\My Documents\My Music"):-File("ding.amr","\Windows\ding.amr")

Now were going to CREATE the new directories that we need under “My Documents”

; -----------Creating new directories on the handset-----------------------
Directory("\My Documents"):-Directory("UAContents")
Directory("\My Documents\UAContents"):-Directory("Templates")

25 BigJ’s Kitchen Walkthrough

Once these directories are created we are free to move files into them

Directory("\My Documents\UAContents\Templates"):-File("0.dat","\Windows\0.dat")
Directory("\My Documents\UAContents\Templates"):-File("0.jpg","\Windows\0.jpg")
Directory("\My Documents\UAContents\Templates"):-File("1.dat","\Windows\1.dat")
Directory("\My Documents\UAContents\Templates"):-File("1.jpg","\Windows\1.jpg")
Directory("\My Documents\UAContents\Templates"):-File("2.dat","\Windows\2.dat")
Directory("\My Documents\UAContents\Templates"):-File("2.jpg","\Windows\2.jpg")

Now of course we need to close the file out properly, like so…

;==
; END-> File Setup for ArcSoft MMS CDMA v3_0_6_24 <-END
;==

I cropped a few entries out because I think you get the point, here is the file now in it’s
entirety

Now lets imagine that you go to BuildOS.exe and you get a file error, that there is already
files named “0.dat” “1.dat” & “2.dat” What do you do now? This is where the magic
comes in. You can rename files on the fly with initflashfiles.txt so long as they are going
into different directories. This is a great trick as well, to stay organized.

Since 0, 1, & 2 are all duplicate files, we will rename them in our OEM package to
1mms.dat, 2mms.dat and 3mms.dat

26 BigJ’s Kitchen Walkthrough

Fantastic, now we need to change our initflashfiles.txt slightly to compensate for this
change. Open it up, on the lines where we moved 0 1 2 dat files, were going to make
alterations

Directory("\My Documents\UAContents\Templates"):-File("0.dat","\Windows\0mms.dat")
Directory("\My Documents\UAContents\Templates"):-File("0.jpg","\Windows\0.jpg")
Directory("\My Documents\UAContents\Templates"):-File("1.dat","\Windows\1mms.dat")
Directory("\My Documents\UAContents\Templates"):-File("1.jpg","\Windows\1.jpg")
Directory("\My Documents\UAContents\Templates"):-File("2.dat","\Windows\2mms.dat")
Directory("\My Documents\UAContents\Templates"):-File("2.jpg","\Windows\2.jpg")

Congratulations, you have just renamed 0 1 & 2 dat files back to their original names.
You see, the second filename is that which you have in your OEM package. The first
name is what the file will be named once it is moved to its destination.

This works for shortcuts as well. Lets revisit our “DeviceLock.lnk” shortcut file. Who
really wants a shortcut called “DeviceLock” on their phone? You don’t, so were going to
rename that file to “Device Lock” once it’s made as a shortcut. Here is the original
example

And again with the shortcut being renamed, effectively adding a space to the shortcut

27 BigJ’s Kitchen Walkthrough

A few more examples that better illustrate the renaming of files when they are moved.

Directory("\Windows\Start Menu\Programs"):-File("Contacts Backup.lnk","\Windows\PPCBckpContacts.lnk")
Directory("\Windows\Start Menu\Programs\Games"):-File("Missile Defense.lnk","\Windows\mcommand.lnk")
Directory("\Windows\Start Menu\Programs\Games"):-File("Texas Holdem.lnk","\Windows\Holdem.lnk")

Finally, an analysis of what you have been looking at

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

28 BigJ’s Kitchen Walkthrough

Section III: The ROM Kitchen

A lot more complicated than you thought. Now comes the easy part believe it or not.
Now we are going to go through, step-by-step on using the kitchen to burn yourself a
customized ROM. Take a deep breath and launch BuildOS.exe

If everything was done properly, it should open with no errors and present you with the
list of categories and packages that you setup in the OEM folder. If you receive an error,
Go to section IV for troubleshooting and then return here. You can see here that I labeled
some categories to “Choose Only 1”. This is because choosing more than one will build
conflicting files and/or registry entries, for instance, you can only have ONE crossbow
theme, to do more than one will throw errors for file duplication. Now is a good time to
double check to make sure EVERY SINGLE OEM package you put in the OEM folder is
showing up. If not, revisit the option.xml section and return here. Now click the build
button and sit tight. It’s the little green one at the top, the application will gray out and in
the bottom right corner you will see its progress, on the bottom left you’ll see the current
folder it’s processing.

29 BigJ’s Kitchen Walkthrough

Once its completed, you will see the word Done! In the bottom left and the screen will
return to white. You will also see a new directory created in the root of your kitchen
called “temp”.

Now we will create the ROM you will flash to your handset. Close BuildOS and double
click on “CreateROM.bat” It will hang for about 20 seconds at this point and finally bring
you to this prompt

Look at your keyboard and find the “ANY” key. Press the “any” key and it will then
package up your dump folder (/temp/dump/) into an NBA file. This happens at a
breakneck speed so watch out for whiplash the below screenshot was slowed down so we
could capture a glimpse of what is taking place…

30 BigJ’s Kitchen Walkthrough

WOW! That was quick huh? This will finish up in a matter of seconds and bring you to
the next prompt

This bat file really likes the “any” key. Go ahead and hit the “any” key to continue.

Hmmmm, that yellow text there looks important. This is a HUGE issue on the forums,
learn how to read guys, if you don’t choose the right carrier you will have issues.

31 BigJ’s Kitchen Walkthrough

Hitting your “any” key now will launch the encode application. This allows you to
encode your ROM using the PROPER carrier file.

Now click on Encode, choose the three “…” to locate the encode file, choose your
carriers file, and finally click on open. A flowchart has been provided.

The project file path should now be populated.

32 BigJ’s Kitchen Walkthrough

Click on Next-

This is where the magic happens. This program will encode your nba file into a fully
flashable nk.nbf file. The ONLY thing you can modify here is the “Version” Changing
anything else will fubar your ROM and you will need to start over. I wouldn’t even mess
with the Version tag for right now, not till you have made a successful ROM. Click

33 BigJ’s Kitchen Walkthrough

At this point you *may* get an error that looks like this.

Just click OK and it will encode

Once it encodes successfully it will dump you back to the black screen with the command
prompt. Once again find your “any” key and hit it. This will open up the phones flash
utility and allow you to begin flashing your newly made ROM to your handset.

Click on Next. This will then “detect” that your phone is hooked up to the computer and
allow you to proceed with your flash. Remember to

BACK UP YOUR DATA BEFORE FLASHING!!!

34 BigJ’s Kitchen Walkthrough

I see you skipped that last part so let’s re-iterate that one more time

BACK UP YOUR DATA BEFORE FLASHING!!!

Now we are at the final screen before wiping your data, and updating your OS.

Click Update. Sit back, this takes approx 15 minutes. You can watch the little bars go up
as it progresses, you can even count them like I do…

When it finishes it will bring you to a completed screen. Click on Finish and unplug.

HARD RESET YOUR PHONE NOW!

35 BigJ’s Kitchen Walkthrough

Hard-Reset your phone. Go through the setup and TEST every OEM package you
included to make sure its working. Test the built-in applications as well. Double check
that your carrier connection is there (#777), pretty much, TEST TEST TEST everything!

Congratulations, you’re a PPCGeek!

BigJ’s Tips & Tricks

Here is a little segment on things I do differently. Some are done to speed things up.
Others are done purely for organizational reasons, and others… well lets just not talk
about those.

The very first thing I do is edit the CreateROM.bat file. I don’t like having all that
garbage automated, I want it to do one thing, make my dump folder an .NBA file. Thanks
guys, but ill take it from here. To do this you right click on the CreateROM.bat file and
choose EDIT. At the very first WARNING segment I delete everything and add in the
:end of the file. This stops it from doing anything after making the nba, and just closes
the program.

For me, this becomes…

I put in two lines of notes to remind me to grab it and patch it, then encode it and burn it!

36 BigJ’s Kitchen Walkthrough

Doing it this way allows me to grab the raw .nba file from the /temp/ folder and then
move it to my patch folder. This is where I patch in my custom boot screens. It also
allows me to use my bigj.prj file to encode the nba file to an nbf, my personal encode file
is where I have modified the Version key that we talked about leaving alone previously.
After I encode it to an NBF file, I throw it into my patch folder. This is the one that
contains the NOID exe that forces you to be in bootloader mode when flashing, and also
ignores all country id type errors. I don’t trust flashing a phone that is on, I prefer to do it
in bootloader.

Most of my other tricks we have gone over. I have discussed cleaning up the kitchen to
be better organized by clearing out the OEM folder for optional_ item packages only. We
discussed creating and cleaning up OEM packages. Every SINGLE oem package on the
ftp I have used, I have taken, cleaned up, redone the initflashfiles.txt. We talked about
making cute checkboxes for everything by using an option.xml file. So ya, take the
initiative and clean up your kitchen. The single best advice I can give you is to TAKE
NOTES. Every Single Change…. And I mean every single thing I touch, move, open,
delete…. I note down in notepad as I work. That way I don’t forget something, or break
something and not remember which files I was into.

Tricks we did not cover.
1 – UPX files executables and DLL files to get more bang for your buck
2 – Why I like to remove help files, and how totally worthless they are
3 – How I suck at provxml files but know enough to be dangerous

1- UPX files. This is a fantastic way to cram more stuff in your ROM. It basically
“zips” up the exe file and can do the same for dll files. Some programs will not
function properly when compressed, or when you compress their support files so
be careful and thoroughly test those programs before making an OEM with UPX
compressed files. There are numerous rumors that compressing the files wont
allow you to gain more room in your ROM, its called a rumor for a reason, and its
because that simply isn’t true. I had hit the ceiling for space in my custom roms
several times. The easiest way for me to cram another program in there was by
compressing other programs that were already built in. Another thing you may
hear, is that the file FULLY decompresses into RAM when you load it. This is
only partially true. Doing some research I found that it is only executed fully into
RAM initially, once its decompressed and running, the file itself leaves only a
footprint in RAM that points to the compressed file. Its kind of hard to understand
from a technical standpoint so let me simplify it a little. ~ BigJ’s Metaphor ~ Its
like leaving a trial of rice behind you as you walk into a maze. Uh, so feel free to
read all the documentation on sourceforge if you really care.

37 BigJ’s Kitchen Walkthrough

2- Another great way to reclaim space to use for your own ends are by removing
garbage help files and garbage pictures. This phone has a TON of pictures that are
completely worthless, and even more worthless Help files. I say you go berserk
like and rampage through the phones help files and delete them. Delete them
ALL. The only thing I can tell you to watch out for is that not all .htm files are
help files, several of those are used as templates for the browser and outlook so
you can open up and read emails. The easiest way to tell is to just open them in
dreamweaver and if they have template tags, leave them alone. Another easy way
to identify them is that most of the ones you actually NEED, their names end in
0409 (wich is an English language tag).

3- ProvXML files. I did not cover this in the complicated cab files section because
Ive only run across one cab file that ever had one, and that is actually the one in
the example. The arcsoft MMS cab file uses an xml document to create itself
another inbox in outlook. Its very easy to identify it however, as the cab file has
an XML document in it. You basicly just rename it following the provxml naming
convention listed in the MSDN archives on microsofts technet.

mxip_MMS_306.provxml

 basicly mxip_APP_VERSION.provxml pretty straightforward. You can also use
 provxml files to create and delete registry entries, but its not necessary 99% of the
 time so it was not worth making an entire section on.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

38 BigJ’s Kitchen Walkthrough

Section IV – What went wrong?

In this section were going to discuss all the different types of things that can go wrong.
This will be as comprehensive as possible within reason, but it should be enough for you
to overcome the most common problems associated with building your own ROM, and
how to resolve them without bothering people like me…

- Common Error messages and what they mean
- Stuck in Bootloader Mode
- White Screen of Death
- Hanging on the Bootscreen
- Hanging on the second splash screen
- Locks up at the today screen

The VERY first error you will encounter will be a mistake in your option.xml files.
Either the one in the root directory of OEM or SYS, and secondly, one that you put into
an OEM package. The program will open, and then just promptly crash asking you to
send a crash report to Microsoft. This is an OPTION.XML conflict. To avoid this youll
want to launch BuildOS.exe after every OEM package that you add to the kitchen, as
well as any time you make a change to either of the root option.xml files (which you
really should never be touching anyways).

If you have built OEM packages that have files that are already in the ROM, you will get
this error. Note the name of the file in question in the error dialog, and do a search for it
in your kitchen folder. You will only need one instance of any given file. If you do in fact
need both files, rename one, and edit its initflashfiles to change its name once it’s moved
to its final resting place. If this is not an option for you, you will need to decide which
copy of the file must go.

Another error you will probably encounter is the one that BuildOS throws when you
screwed up an RGU file. It’s pretty nasty and you have to wait until the very end to get it.
Basically it’s attempting to create an entry that is not formatted properly. This can be
caused by a few things. We discussed already about having file paths use double “\\” and
not ending with them. You also need to double check that your .RGU files are actually
encoded in UNICODE. This is very important if you remember.

39 BigJ’s Kitchen Walkthrough

The next error you may get is actually running the CreateROM.bat file. The initial
portion will run properly, once you hit the any key, and all the text goes flying down the
list you will get an error. The funny thing is, it lets you continue to build the ROM, but
you should not, it won’t work anyways. The error you see below, means that you
overfilled your ROM. That’s right, you put WAY to many OEM packages into your
build. You need to go through some elimination tactics and put less packages into your
ROM.

The next three errors are not an issue with this kitchen. The previous kitchens would not
error when you went overlimit, and as such, you you would build up the ROM and never
know you were over size. Since this is no longer an issue, I will not be going into detail
on them. If this happens to you for some reason at this point, it’s safe to say that you
probably messed up something in the SYS folder, or one of your OEM packages
overwrote or bypassed something in the registry it should not have. They are…

- White Screen of Death
- Hanging on the Bootscreen
- Hanging on the second splash screen

40 BigJ’s Kitchen Walkthrough

The last issue we are going to discuss is hanging on the todayscreen. Typically you boot
up your device, there is a slight delay, and then all of the today screen plugins load. When
it doesn’t, and the phone is actually hung on that initial boot phase while loading the
plugins… guess what… you have a plugin problem.

I personally disable most of the operating system plugins by editing their boot string to
zero in the rgu file. (see my registry tweaks OEM). A lot of OEM packages set their
programs to load on the today screen by default. This is great if you’re installing the
program, but were not installing the program, we have made it an integral part of the
operating system. Best practices say that *ANY* non operating system plugin be
disabled by default. You should follow that rule also. Sure it’s neat to load up and have
all your favorite plugins up right away, but they sometimes cause problems especially on
an initial boot from a flash. It would be a good idea to change their load strings to zero,
and after you have gotten into the system, go into the today-screen options and enable
them. This will also help you know which application may have been causing the
program because if you load it, and it crashes the phone, you need to revisit that OEM
package.

I could go one forever, but 40 pages is my limit. I hope that this document is an
invaluable tool for you, and for others as well. I would like to thank everyone in the
PPCGeeks forums, as well as everyone on the XDA Developers boards. These two
forums have never left me without an answer, and have provided me with all of the tools
I have ever needed or wanted for my handset.

Thank you for looking at this guide, may it serve its purpose long after I have moved on.

~Fin

